The meaning of the problem is too tricky, I couldn't understand it at first.
It turns out to be an easy problem.
/\*
\* GCA : "Computer is artificial subject absolutely,Math is God"
\*/
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <climits>
#include <vector>
#include <set>
#include <map>
#include <queue>
#include <cctype>
#include <utility>
#include <ctime>
using namespace std;
#ifdef DEBUG
#define VAR(a,b) \_\_typeof(b) a=(b)
#define debug(...) printf("DEBUG: "),printf(\_\_VA\_ARGS\_\_)
#else
#define VAR(a,b) \_\_typeof(b) a=(b)
#define debug(...)
#endif
typedef unsigned int uint;
typedef long long int Int;
typedef unsigned long long int UInt;
#define Set(a,s) memset(a,s,sizeof(a))
#define Pln() printf("\\n")
#define For(i,x)for(int i=0;i<x;i++)
#define CON(x,y) x##y
#define M 31
#define PB push\_back
#define oo INT\_MAX
#define FOR(a,b) for(VAR(a,(b).begin());a!=(b).end();++a)
#define eps 1e-9
#define X first
#define Y second
inline bool xdy(double x,double y){return x>y+eps;}
inline bool xddy(double x,double y){return x>y-eps;}
inline bool xcy(double x,double y){return x<y-eps;}
inline bool xcdy(double x,double y){return x<y+eps;}
const Int mod=1000000007;
int n,x,y;
int findheight(int x){
for(int i=n-1;i>=0;i--){
if((x>>i)&1)return i;
}
return -1;
}
int main() {
ios\_base::sync\_with\_stdio(0);
int test;
scanf("%d",&test);
while(test--){
scanf("%d%d%d",&n,&x,&y);
int hx=findheight(x);
int hy=findheight(y);
int h=max(hx,hy);
int same=(1<<(n-h))-1;
printf("%d\\n",((1<<n)-1)-same+1);
}
}